$$
\begin{align*}
& \beta_{C L}=\frac{A_{L} \bar{x}_{L}}{E I_{L} l_{L}}+\frac{M_{L} l_{L}}{6 E I_{L}}+\frac{M_{C} l_{L}}{3 E I_{L}} \tag{13.2a}\\
& \beta_{C R}=\frac{A_{R} \bar{x}_{R}}{E I_{R} l_{R}}+\frac{M_{R} l_{R}}{6 E I_{R}}+\frac{M_{C} l_{R}}{3 E I_{R}} \tag{13.2b}
\end{align*}
$$

The rotations of the chord $L^{\prime} C^{\prime}$ and $C^{\prime} R^{\prime}$ from the original position is given by

$$
\begin{align*}
& \alpha_{C L}=\frac{\delta_{L}-\delta_{C}}{l_{L}} \tag{13.3a}\\
& \alpha_{C R}=\frac{\delta_{R}-\delta_{C}}{l_{R}} \tag{13.3b}
\end{align*}
$$

From Fig. 13.1, one could write,
Equations 13.2(a), 13.2(b),13.3(a) and 13.3(b) of page 3

Thus, from equations (13.1) and (13.4), one could write,

$$
\begin{equation*}
\alpha_{C L}-\beta_{C L}=\beta_{C R}-\alpha_{C R} \tag{13.5}
\end{equation*}
$$

Substituting the values of $\alpha_{C L}, \alpha_{C R}, \beta_{C L}$ and $\beta_{C R}$ in the above equation,
$M_{L}\left(\frac{l_{L}}{I_{L}}\right)+2 M_{C}\left\{\frac{l_{L}}{I_{L}}+\frac{l_{R}}{I_{R}}\right\}+M_{R}\left(\frac{l_{R}}{I_{R}}\right)=-\frac{6 A_{R} \bar{x}_{R}}{I_{R} l_{R}}-\frac{6 A_{L} \bar{x}_{L}}{I_{L} l_{L}}+6 E\left(\frac{\delta_{L}-\delta_{C}}{I_{L}}\right)+6 E\left(\frac{\delta_{R}-\delta_{C}}{I_{R}}\right)$
This may be written as
$M_{L}\left(\frac{l_{L}}{I_{L}}\right)+2 M_{C}\left\{\frac{l_{L}}{I_{L}}+\frac{l_{R}}{I_{R}}\right\}+M_{R}\left(\frac{l_{R}}{I_{R}}\right)=-\frac{6 A_{R} \bar{x}_{R}}{I_{R} l_{R}}-\frac{6 A_{L} \bar{x}_{L}}{I_{L} l_{L}}-6 E\left[\left(\frac{\delta_{C}-\delta_{L}}{l_{L}}\right)+\left(\frac{\delta_{C}-\delta_{R}}{I_{R}}\right)\right]$
The above equation relates the redundant support moments at three successive
spans with the applied loading on the adjacent spans and the support spans with the applied loading on the adjacent spans and the support
settlements.

Equations 13.5 and 13.6 of page 4

$$
\begin{align*}
& \qquad \delta_{L}=\delta_{C}=0 \text { and } \delta_{R}=-5 \times 10^{-3} \mathrm{~m} \\
& \qquad M_{A}^{\prime}\left(\frac{L^{\prime}}{\infty}\right)+2 M_{A}\left\{\frac{L^{\prime}}{\infty}+\frac{4}{I}\right\}+M_{B}\left(\frac{4}{I}\right)=-\frac{6 \times 8 \times 2}{I(4)}-6 E\left(0+\frac{0-\left(-5 \times 10^{-3}\right.}{4}\right) \\
& \qquad 8 M_{A}+4 M_{B}=-24-6 E I \times \frac{5 \times 10^{-3}}{4} \tag{1}\\
& \text { Note that, } E I=200 \times 10^{9} \times \frac{8 \times 10^{6} \times 10^{-12}}{10^{3}}=1.6 \times 10^{3} \mathrm{kNm}^{2} \\
& \text { Thus, } \\
& \qquad 8 M_{A}+4 M_{B}=-24-6 \times 1.6 \times 10^{3} \times \frac{5 \times 10^{-3}}{4} \\
& \qquad 8 M_{A}+4 M_{B}=-36 \tag{2}
\end{align*}
$$

Equations (1) and (2) of page 6

$$
\begin{gather*}
M_{A}\left\{\frac{4}{I}\right\}+2 M_{B}\left\{\frac{4}{I}+\frac{4}{I}\right\}=-\frac{24}{I}-\frac{6 \times 10.667 \times 2}{I \times 4}-6 E\left(\frac{-5 \times 10^{-3}}{4}-\frac{5 \times 10^{-3}}{4}\right) \\
4 M_{A}+16 M_{B}=-24-32+6 \times 1.6 \times 10^{3} \times \frac{10 \times 10^{3}}{4} \\
4 M_{A}+16 M_{B}=-32 \tag{3}
\end{gather*}
$$

Equation (3) of page 6

A continuous beam $A B C D$ is supported on springs at supports B and C as shown in Fig.13.3a. The loading is also shown in the figure. The stiffness of springs is $k_{B}=\frac{E I}{20}$ and $k_{C}=\frac{E I}{30}$. Evaluate support reactions and draw bending moment diagram. Assume $E I$ to be constant.

Now applying three moment equations to span $A B C$ (see Fig.13.2b)

$$
M_{A}\left\{\frac{4}{I}\right\}+2 M_{B}\left\{\frac{4}{I}+\frac{4}{I}\right\}+M_{C}\left\{\frac{4}{I}\right\}=-\frac{6 \times 21.33 \times 2}{I \times 4}-\frac{6 \times 20 \times 2}{I \times 4}-6 E\left[\frac{-20 R_{B}}{4 E I}+\frac{\frac{-20 R_{B}}{E I}+\frac{30 R_{C}}{E I}}{4}\right]
$$

Simplifying,

$$
\begin{equation*}
16 M_{B}+4 M_{C}=-124+60 R_{B}-45 R_{C} \tag{2}
\end{equation*}
$$

Again applying three moment equation to adjacent spans $B C$ and $C D$,

$$
\begin{gather*}
M_{B}\left\{\frac{4}{I}\right\}+2 M_{C}\left\{\frac{4}{I}+\frac{4}{I}\right\}= \\
-\frac{60}{I}-\frac{\left(6 \times 9 \times 2+6 \times 3 \times \frac{2}{3} \times 1\right)}{I \times 4}-6 E\left[\frac{-\frac{30 R_{C}}{E I}+\frac{20 R_{B}}{E I}}{4}+\frac{-30 R_{C}}{4 E I}\right] \tag{3}\\
4 M_{B}+16 M_{C}=-90+90 R_{C}-30 R_{B}
\end{gather*}
$$

Equations (2) \& (3) of page 10

$$
\begin{align*}
\theta_{A} & =\beta_{A R}-\alpha_{A R} \\
& =\frac{A_{R} \bar{x}_{R}}{E I_{R} I_{R}}+\frac{M_{B} I_{R}}{6 E I_{R}}+\frac{M_{A} l_{R}}{3 E I_{R}}-\left(\frac{\delta_{B}-\delta_{A}}{4}\right) \\
& =\frac{6 \times 8 \times 2}{1.6 \times 10^{3} \times 4}+\frac{M_{B} \times 4}{1.6 \times 10^{3} \times 6}+\frac{M_{A} \times 4}{1.6 \times 10^{3} \times 3}-\left(\frac{\delta_{B}-\delta_{A}}{4}\right) \\
& =\frac{6 \times 8 \times 2}{1.6 \times 10^{3} \times 4}+\frac{(-1) \times 4}{1.6 \times 10^{3} \times 6}+\frac{(-4) \times 4}{1.6 \times 10^{3} \times 3}+\left(\frac{5 \times 10^{-3}}{4}\right) \\
& =0 \tag{1}
\end{align*}
$$

For calculating $\theta_{B L}$, consider span $A B C$

$$
\begin{align*}
\theta_{B L} & =\alpha_{B L}-\beta_{B L} \\
& =-\left(\frac{A_{L} \bar{x}_{L}}{E I_{L} I_{L}}+\frac{M_{A} I_{L}}{6 E I_{L}}+\frac{M_{B} I_{L}}{3 E I_{L}}\right)+\left(\frac{\delta_{A}-\delta_{B}}{I_{L}}\right) \\
& =-\left(\frac{8 \times 2}{1.6 \times 10^{3} \times 4}+\frac{(-4) \times 4}{1.6 \times 10^{3} \times 6}+\frac{(-1) \times 4}{1.6 \times 10^{3} \times 3}\right)+\left(\frac{5 \times 10^{3}}{4}\right) \\
& =1.25 \times 10^{-3} \text { radians } \tag{2}
\end{align*}
$$

For $\theta_{B K}$ consider span ABC

$$
\begin{align*}
\theta_{B R} & =\left(\frac{10.67 \times 2}{1.6 \times 10^{3} \times 4}+\frac{(-1) \times 4}{1.6 \times 10^{3} \times 3}\right)-\left(0+\frac{5 \times 10^{3}}{4}\right) \\
& =-1.25 \times 10^{-3} \text { radians } \tag{3}\\
\theta_{C} & =-\left(\frac{10.67 \times 2}{1.6 \times 10^{3} \times 4}+\frac{(-1) \times 4}{1.6 \times 10^{3} \times 3}\right)-\left(\frac{\delta_{B}-\delta_{C}}{4}\right) \\
& =-3.75 \times 10^{-3} \text { radians. }
\end{align*}
$$

(4)

The deflected shape of the beam is shown in Fig. 13.4.

Equations (3) \& (4) of page 14

